

PHYSICS AND THE QUANTUM MECHANICAL MODEL

Section Review

Objectives

- Describe the relationship between the wavelength and frequency of light
- Explain how the frequencies of light are related to changes in electron energies

• spectrum

• electromagnetic radiation

• atomic emission spectrum

- Distinguish between quantum mechanics and classical mechanics
- Identify the cause of the atomic emission spectrum

Vocabulary

- amplitude
- wavelength (λ)
- frequency (v)
- hertz (Hz)

• ground state

- photons
 - Heisenberg uncertainty • principle

- **Key Equations**
- $c = \lambda v$
- $E = h \times v$
- $\lambda = \frac{h}{mv}$

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

According to quantum mechanics, the motions of subatomic	1
particles may be described as <u>1</u> . The frequency and	2
wavelength of all waves are <u>2</u> related.	3
Every element emits <u>3</u> if it is heated by passing an	4
electric discharge through its gas or vapor. Passing this emission	5
through a prism gives the <u>4</u> of the element.	6
The quantum concept developed from Planck's studies of	7
5 and Einstein's explanation of the6 effect. Planck	

showed that the amount of radiant energy absorbed or emitted by

a body is proportional to the <u>7</u> of the radiation.

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- 8. The speed of light is a constant that can be obtained by dividing the frequency of light by its wavelength. **9.** The amplitude of a wave is the distance between the crests.
- **10.** The energy of a body can change only in small discrete units.
 - **11.** The position and velocity of an electron in an atom can be determined with great certainty.
- **12.** The photoelectric effect will occur no matter what frequency of light strikes a metal.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A		Column B
 13.	photons a	ı.	predicts that all matter exhibits wavelike motions
 14.	de Broglie's equation).	the distance between two consecutive wave crests
 15.	visible light c	2.	light quanta
 16.	ground state d	l.	the lowest energy level for a given electron
 17.	wavelength e	9.	example of electromagnetic radiation

Part D Questions and Problems

Answer the following in the space provided.

18. What is the frequency of radiation whose wavelength is 2.40×10^{-5} cm?

19. Apply quantum theory to explain the photoelectric effect.