

BALANCING REDOX REACTIONS

Section Review

Objectives

- Balance a redox equation using the oxidation-number-change method
- Balance a redox equation by breaking a redox equation into oxidation and reduction half-reactions and then using the half-reaction method

Vocabulary

- oxidation-number-change method
- half-reaction
- half-reaction method

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced is this section. Each blank can be completed with a term, short phrase, or number.

One method for balancing redox equations involves	1				
determining the change in <u>1</u> of the substances that are	2				
oxidized and reduced. Coefficients are then used to make the	3				
increase in oxidation number equal to the decrease.	4				
The method is another way to write a3	5				
equation for a redox reaction. In this method, the net4	6				
equation is divided into half-reactions. Each half-reaction 7					
is balanced independently. Finally, the half-reactions are <u>6</u> .					
The half-reaction method is particularly useful in balancing					
equations for 7 reactions.					

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

8. The reduction half-reaction in the reaction $MnO_4^- + Cl^- \rightarrow Mn^{2+} + Cl_2$ involves $MnO_4^- \rightarrow Mn^{2+}$

Name		Date	Class
	_ 9.	In an oxidation half-reaction, electrons occur on the right side equation.	le of the
	_ 10.	Electrons never appear in a balanced redox reaction.	
	_ 11.	$2e^- + 2Cl^- \rightarrow Cl_2$ is a balanced half-reaction.	
	_ 12.	To balance the oxygen in a half reaction involving $MnO_4^- \rightarrow 2H_2O$ will be added to the product side of the equation.	Mn ²⁺ ,
	_ 13.	In the equation $2\text{FeBr}_2 + \text{Br}_2 \rightarrow 2\text{FeBr}_3$, the oxidation number iron doesn't change.	er of the

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A		Column B
14.	half-reaction method	a.	ions that are present but do not participate in or change during the reaction
15.	spectator ions	b.	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} + e^{-}$
16.	anions	c.	balancing a redox equation by first balancing the oxidation and reduction half-reactions
17.	oxidation half-reaction	d.	balancing a redox equation by comparing the increase and decrease in oxidation numbers
18.	half-reaction	e.	equation showing either the reduction or the oxidation of a species in an oxidation-reduction reaction
19.	oxidation-number- change method	f.	ions that can serve as reducing agents
20.	reduction half-reaction	g.	$2e^- + Br_2 \rightarrow 2Br^-$

Part D Questions and Problems

Answer the following in the space provided.

- **21.** Balance these redox equations using the oxidation-number-change method.
 - **a.** $HNO_3(aq) + HI(g) \rightarrow NO(g) + I_2(s) + H_2O$
 - **b.** HNO₃(*aq*) + I₂(*s*) \rightarrow HIO₃(*aq*) + NO₂(*g*) + H₂O(*l*)
- **22.** Balance these redox equations using the half-reaction method.

a.
$$H_2S(aq) + HNO_3(aq) \rightarrow S(s) + NO(g) + H_2O(l)$$

b.
$$Fe^{2+} + Cr_2O_7^{2-} \rightarrow Fe^{3+} + Cr^{3+}$$