

NEUTRALIZATION REACTIONS

Section Review

Objectives

- Explain how acid–base titration is used to calculate the concentration of an acid or a base
- Explain the concept of equivalence in neutralization reactions

Vocabulary

- neutralization reactions
- titration
- equivalence point
- end point
- standard solution

Key Equations

- Acid + Base \rightarrow Salt + Water
- Gram equivalent mass = $\frac{\text{molar mass}}{\text{number of ionizable hydrogens}}$
- Normality (N) = equiv/L
- $N_1 \times V_1 = N_2 \times V_2$
- $N_A \times V_A = N_B \times V_B$

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

In the reaction of $a(n) _ 1$ with a base, hydrogen ions	1
and <u>2</u> ions react to produce <u>3</u> . This reaction, called	2
4, is usually carried out by5 The6 in a	3
titration is the point at which the solution is neutral. At the	4
7 point of a titration, the number of equivalents of acid	5
equals the number of equivalents of base.	6
	7.

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- **8.** A solution of known concentration is called a standard solution.
 - **9.** The end point of a titration of a strong base with a strong acid occurs when $[H^+] = [OH^-]$.
- **10.** The point of neutralization is the end point of titration.
- **11.** The reaction of an acid and a base produces only water.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A	Column B
12.	titration a .	when the number of moles of hydrogen ions equals the number of moles of hydroxide ions
13.	neutralization b . reactions	a solution of known concentration
14.	equivalence point c.	a process for determining the concentration of a solution by adding a known amount of a standard solution
15.	standard solution d	point of neutralization
16.	end point e.	reactions between acids and bases to produce a salt and water

Part D Problem

Answer the following in the space provided.

17. Complete and balance the equations for the following acid–base reactions.

a. $H_3PO_4 + Al(OH)_3$

b. $HI + Ca(OH)_2$