

STRENGTHS OF ACIDS AND BASES

Section Review

Objectives

- Define strong acids and weak acids
- Calculate an acid dissociation constant (K_a) from concentration and pH measurements
- Order acids by strength according to their acid dissociation constants (K_a)
- Order bases by strength according to their base dissociation constants (*K*_b)

Vocabulary

- strong acids
- weak acids

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

- strong bases
- weak bases
- acid dissociation constant (K_a)
- base dissociation constant (K_b)

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The strength of an acid or a base is determined by the $__1$	1
of the substance in solution. The acid dissociation constant,	2
, is a quantitative measure of acid strength. A strong acid	3
has a much K_a than a weak acid. The K_a of an acid is	4
determined from measured <u>4</u> values.	5
Hydrochloric acid and sulfuric acid are5 ionized in	6
solution and are6 acids. Ethanoic acid, which is only about	7
1 percent ionized, is a <u>7</u> acid. Magnesium hydroxide and	8
calcium hydroxide are strong <u>8</u> .	9
Weak bases react with9 to form the hydroxide ion and	10
the conjugate of the base. Concentration in solution does	11
not affect whether an acid or a base is 11 or weak.	

Chapter 19 Acids, Bases, and Salts 491

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

 12.	Acids are completely dissociated in aqueous solution.
 13.	Diprotic acids lose both hydrogens at the same time.
 14.	Acid dissociation constants for weak acids can be calculated from experimental data.
 15.	Bases react with water to form hydroxide ions.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A	Column B
16.	strong acids a.	ratio of the concentration of the dissociated (or ionized) form of an acid to the concentration of the undissociated acid
17.	weak acids b.	bases that dissociate completely into metal ions and hydroxide ions in aqueous solution
18.	acid dissociation c. constant (K_a)	acids that ionize completely in aqueous solution
19.	strong bases d.	bases that do not dissociate completely in aqueous solution
20.	weak bases e.	acids that are only partially ionized in aqueous solution
21.	base dissociation f. constant (K_b)	ratio of concentration of conjugate acid times concentration of hydroxide ion to the concentration of conjugate base

Part D Problem

Answer the following in the space provided.

22. A 0.35*M* solution of a strong acid, HX, has a $[H^+]$ of 4.1×10^{-2} . What is the value of K_a for this acid?