HYDROGEN IONS AND ACIDITY

Section Review

Objectives

- Classify a solution as neutral, acidic, or basic, given the hydrogen-ion or hydroxide-ion concentration
- Convert hydrogen-ion concentrations into values of pH and hydroxide-ion concentrations into values of pOH
- Describe the purpose of pH indicators

Vocabulary

- self-ionization
- neutral solution
- ion-product constant for water (K_w)
- acidic solution
- basic solution
- alkaline solutions
- рН

Key Equations

- $K_w = [H^+] \times [OH^-] = 1.0 \times 10^{-14} M^2$
- $pH = -\log[H^+]$

- $pOH = -\log [OH^-]$
- pH + pOH = 14

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

hydroxide ions (OH⁻). The concentrations of these ions in pure water at 25°C are both equal to ____ mol/L.

Water molecules can _____ to form hydrogen ions (H⁺) and

2. _____

1.

denote the ___4__ concentration of a solution. On this scale, 0 is

The pH scale, which has a range from ____3___, is used to

strongly <u>5</u>, 14 is strongly <u>6</u>, and 7 is <u>7</u>. Pure

5. _____

water at 25°C has a pH of ___8__.

The <u>9</u> constant for water has a value of 1.0×10^{-14} .

Thus, the product of the concentrations of ___10__ ions and

<u>11</u> ions in aqueous solution will always equal 1.0×10^{-14} .

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

12. In an acidic solution, $[H^+]$ is greater than $[OH^-]$.

_____ 13. pH indicators can give accurate pH readings for solutions.

14. If the [H⁺] in a solution increases, the [OH⁻] must decrease.

_____ **15.** The $[OH^-]$ is less than $10^{-7}M$ in a basic solution.

_____ **16.** The definition of pH is the negative logarithm of the hydroxide-ion concentration.

Part C Matching

18. pH

Match each description in Column B to the correct term in Column A.

Column A

19. self-ionization

20. neutral solution

22. acidic solution

23. basic solution

21. ion-product constant

for water (K_w)

Column B

17. alkaline solutions **a.** aqueous solution in which [H⁺] and [OH⁻] are equal

b. product of hydrogen ion and hydroxide ion concentrations for water

c. base solutions

d. solution in which [H⁺] is less than [OH⁻]

e. reaction in which two water molecules produce ions

f. the negative logarithm of the hydrogen-ion concentration

g. solution in which [H⁺] is greater than [OH⁻]

Part D Problems

Answer the following in the space provided.

24. Calculate the hydroxide-ion concentration, [OH $^-$], for an aqueous solution in which [H $^+$] is 1×10^{-10} mol/L. Is this solution acidic, basic, or neutral?

- **25.** Determine the hydrogen-ion concentrations for aqueous solutions that have the following pH values.
 - **a.** 3

b. 6

c. 10