amphoteric

• Lewis acid

• Lewis base

.....

19.1

ACID-BASE THEORIES

Section Review

Objectives

- Define the properties of acids and bases
- Compare and contrast acids and bases as defined by the theories of Arrhenius, Brønsted-Lowry, and Lewis

• conjugate base

• conjugate acid–base pair

• hydronium ion (H_3O^+)

Vocabulary

- monoprotic acids
- diprotic acids
- triprotic acids
- conjugate acid

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

Compounds can be classified as acids or bases according to	1
<u>1</u> different theories. An <u>2</u> acid yields hydrogen ions	2
in aqueous solution. An Arrhenius base yields <u>3</u> in aqueous	3
solution. A Brønsted-Lowry acid is a <u>4</u> donor. A Brønsted-	4
Lowry base is a proton <u>5</u> . In the Lewis theory, an acid is an	5
<u>6</u> acceptor. A Lewis base is an electron-pair <u>7</u> .	6
An acid with one ionizable hydrogen atom is called a $__8$	7
acid, while an acid with two ionizable hydrogen atoms is called a	8
9 acid.	9
A 10 is a pair of substances related by the gain or loss of	10
a hydrogen ion. A substance that can act as both an acid and a base	11
is called <u>11</u> .	

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- 12. Hydrochloric acid is a strong acid that is diprotic.
 13. The ammonium ion, NH₄⁺, is a Brønsted-Lowry base.
 14. A Brønsted-Lowry base is a hydrogen-ion acceptor.
 15. A compound can act as both an acid and a base.
- _____ **16.** PBr₃ is a Lewis base.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A		Column B
17.	monoprotic acids	a.	tastes sour and will change the color of an acid-base indicator
18.	triprotic acids	b.	an electron-pair donor
19.	acid properties	c.	a water molecule that gains a hydrogen ion
20.	base properties	d.	acids that contain three ionizable hydrogens
21.	conjugate base	e.	particle that remains when an acid has donated a hydrogen ion
22.	conjugate acid	f.	an electron-pair acceptor
23.	hydronium ion (H_3O^+)	g.	acids that contain one ionizable hydrogen
24.	Lewis acid	h.	tastes bitter and feels slippery
25.	Lewis base	i.	particle formed when a base gains a hydrogen ion

Part D Problem

Answer the following in the space provided.

26. Identify the Lewis acid and Lewis base in the following reaction. Explain.

