

GASES: MIXTURES AND MOVEMENTS

Section Review

Objectives

- Relate the total pressure of a mixture of gases to the partial pressures of the component gases
- Explain how the molar mass of a gas affects the rate at which the gas diffuses and effuses

Vocabulary

• partial pressure

- effusion
- Dalton's law of partial pressures
- Graham's law of effusion

• diffusion

Key Equations

- Dalton's law of partial pressures: $P_{\text{total}} = P_1 + P_2 + P_3 + \dots$
- Graham's law of effusion: $\frac{\text{Rate}_A}{\text{Rate}_B} = \sqrt{\frac{\text{molar mass}_B}{\text{molar mass}_A}}$

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

According to Dalton's law of partial pressures, at constant	1
volume and temperature, the <u>1</u> pressure exerted by a	2
mixture of gases is equal to the <u>2</u> of the partial pressures	3
of the component gases.	4
Molecules tend to move to areas of <u>3</u> concentration	5
until the concentration is $\underline{4}$. This process is called	6
<u>5</u> . During <u>6</u> a gas escapes through a tiny <u>7</u>	7
in its container.	8
The rate of effusion of a gas is <u>8</u> proportional to the	9
square root of the gas's $\9$. This relationship is described	10

by <u>10</u> of effusion.

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Date _____

- **11.** The fraction of the pressure exerted by a gas in a mixture does not change as the temperature, pressure, or volume changes.
- **12.** The rate of diffusion of a gas is not influenced by its molar mass.
- _____13. Two objects with the same mass move at the same velocity.
 - **14.** Diffusion is the tendency of molecules to move towards areas of lower concentration until the concentration is uniform throughout.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A	Column B
15.	partial pressure a	the pressure exerted by each gas in a gaseous mixture
16.	effusion b.	the escape of a gas through a tiny hole in its container
17.	Graham's law of effusion c .	The rate of effusion of a gas is inversely proportional to the square root of its formula mass.

Part D Questions and Problems

Answer the following in the space provided.

18. Explain, using kinetic theory, why molecules of low molar diffuse more rapidly than molecules with a higher molar mass.