.....

IDEAL GASES

Section Review

Objectives

- Compute the value of an unknown using the ideal gas law
- Compare and contrast real and ideal gases

Vocabulary

- ideal gas constant (R)
- ideal gas law

Key Equation

• Ideal gas law: $P \times V = n \times R \times T$ or PV = nRT

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The ideal gas law permits you to solve for the $_1$ of a	1
contained gas when the pressure, volume, and temperature are	2
known. The ideal gas law is described by the formula $\2$	3
where the variable represents the number of moles of	4
gas and the letter <i>R</i> is the $\underline{4}$. <i>R</i> is equal to $\underline{5}$.	5
A gas that conforms to the gas laws at all conditions of	6
temperature and pressure is an <u>6</u> gas. No <u>7</u> gas	7
behaves ideally at all temperatures and pressures. Deviations	8
from ideal behavior at high pressures can be explained by the	9
intermolecular8 between particles in a gas and the actual	

9 of the particles.

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- **10.** The ideal gas law allows you to solve for the number of moles of a contained gas when pressure, volume, and temperature are known.
- **11.** The ratio $(P \times V)/(R \times T)$ is equal to 1 for real gases.
 - **12.** The behavior of a gas is most likely to approach ideal behavior at a high pressure and a low temperature.
 - **13.** For an ideal gas, pressure and volume are directly proportional to each other when all other factors remain constant.
 - **14.** The number of moles of gas is directly proportional to the number of particles.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A		Column B
15.	ideal gas law	a.	$8.31 imes rac{L \cdot kPa}{K \cdot mol}$
16.	real gas I		a gas that follows the gas laws at all conditions of pressure and temperature
17.	ideal gas	c.	a gas that can be liquefied by applying pressure
18.	ideal gas constant (R)	d.	PV = nRT

Part D Questions and Problems

Answer the following in the space provided.

- **19.** Calculate the number of moles of oxygen in a 12.5-L tank if the pressure is 25,325 kPa and the temperature is 22°C.
- **20.** Calculate the mass of nitrogen dioxide present in a 275-mL container if the pressure is 240.0 kPa and the temperature is 28°C.