

MOLE-MASS AND MOLE-VOLUME RELATIONSHIPS

Section Review

Objectives

- Convert the mass of a substance to the number of moles of a substance, and the number of moles of a substance to mass
- Calculate the volume of a quantity of gas at STP

Vocabulary

- Avogadro's hypothesis
- standard temperature and pressure (STP)
- molar volume

Key Equations

- mass (grams) = number of moles $\times \frac{\text{mass (grams)}}{1 \text{ mole}}$
- moles = mass (grams) $\times \frac{1 \text{ mole}}{\text{mass (grams)}}$

•
$$\frac{\text{grams}}{\text{mole}} = \frac{\text{grams}}{\text{L}} \times \frac{22.4 \text{ L}}{1 \text{ mole}}$$

• volume of gas = moles of gas $\times \frac{22.4 \text{ L}}{1 \text{ mole}}$

Part A Completion

Use this completion exercise to check your knowledge of the terms and your understanding of the concepts introduced in this section. Each blank can be completed with a term, short phrase, or number.

At STP (0°C and 1 atmosphere pressure), one mole of any gas	1			
occupies a volume of $\1$ L. This quantity is known as the	2			
of the gas. To determine the volume in liters of 2.00 mol	3			
of SO ₂ gas at STP, you would use 3 as a conversion factor.	4			
, expressed in the units g/L, is used as a conversion factor	5			
when converting from volume to molar mass. When converting				
between numbers of representative particles, masses, and volumes,				
you must always convert to5 as an intermediate step.				

244 Core Teaching Resources

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Date _____

6. One mole of any gas occupies a volume of 22.4 L.
7. For a substance of known molar mass, the number of moles of a sample can be calculated from the mass of the sample.
8. The volume occupied by one mole of a gas is dependent on the molar mass of the gas.
9. The volume of a gas at STP can be calculated from the number of molecules of the gas.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A		Column B
10.	molar mass a	ι.	22.4 L of a gas at STP
11.	standard temperature b).	101.3 kPa or 1 atm
12.	molar volume c	2.	0°C
13.	standard pressure d	l.	mass (in grams) of one mole of a substance
14.	molar road map e	2.	a means of relating mass, number of representative particles, and gaseous volume of a substance

Part D Problems

Solve the following problems in the space provided. Show your work.

- 15. What is the density of N_2O , a gas, at STP?
- 16. What is the mass of two moles of NaCl?
- **17.** How many moles are in 16 grams of O_2 ?
- **18.** What is the volume of 16 grams of O_2 at STP?