.....

CHEMICAL CALCULATIONS

Section Review

Objectives

- Construct mole ratios from balanced chemical equations and apply these ratios in mole-mole stoichiometric calculations
- Calculate stoichiometric quantities from balanced chemical equations, using units of moles, mass, representative particles, and volumes of gases at STP

Key Equations

• mole-mole relationship used in every stoichiometric calculation:

 $aG \longrightarrow bW$ (given quantity) (wanted quantity)

• $x \mod G \times \frac{b \mod W}{a \mod G} = \frac{xb}{a} \mod W$ Given Mole Ratio Calculated

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

Mole ratios from balanced equations may be used to solve	1
problems with other units such as numbers of $_1$ and $_2$	2
of gases at STP. The $__3$ from the balanced equation are used	3
to write conversion factors called <u>4</u> . These conversion factors	4
are used to calculate the numbers of moles of5 from a given	5
number of moles of <u>6</u> . In mass-mass calculations, the molar	6
mass is used to convert mass to <u>7</u> .	7

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- **8.** In mass-mass calculations, the molar mass is used to convert mass to moles.
- **9.** The mole ratio 2 mol HF/1 mol SnF₂ can be used to determine the mass of SnF₂ produced according to the equation: Sn(*s*) + 2HF(*g*) \rightarrow SnF₂(*s*) + H₂(*g*)

Name	Date Class
1	0. In a volume-volume problem, the 22.4 L/mol factors always cancel out.
1	1. In stoichiometric problems, volume is expressed in terms of liters.
1	2. For a mass-mole problem, the first conversion from mass to moles is skipped.
1	3. For a mass-mass problem, the first conversion is from moles to mass.
1	 Because mole ratios from balanced equations are exact numbers, they do not enter into the determination of significant figures.

Part C Matching

Match each conversion problem in Column A to the correct solution in Column B.

Column A	Column B
 15. moles $O_2 \rightarrow \text{grams } O_2$	a. molecules $\times \frac{\text{mol}}{6.02 \times 10^{23} \text{ molecules}} \times \frac{18.0 \text{ g}}{\text{mol}}$
 16. liters $SO_2 \rightarrow \text{grams } SO_2$ at STP	b. liters $\times \frac{\text{mol}}{22.4 \text{ L}} \times \frac{64.1 \text{ g}}{\text{mol}}$
 17. molecules $\text{He} \rightarrow \text{liters He}(g)$ at STP	c. mol $\times \frac{32.0 \text{ g}}{\text{mol}}$
 18. grams $Sn \rightarrow$ molecules Sn	d. molecules $\times \frac{\text{mol}}{6.02 \times 10^{23} \text{molecules}} \times \frac{22.4 \text{ L}}{\text{mol}}$
 19. molecules $H_2O \rightarrow \text{grams } H_2O$	e. grams $\times \frac{\text{mol}}{119 \text{ g}} \times \frac{6.02 \times 10^{23} \text{ molecules}}{\text{mol}}$

Part D Questions and Problems

Answer the following questions in the space provided.

20. How many liters of carbon monoxide (at STP) are needed to react with 4.8 g of oxygen gas to produce carbon dioxide?

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

21. What mass of ammonia, NH_3 , is necessary to react with 2.1×10^{24} molecules of oxygen in the following reaction?

$$4\mathrm{NH}_3(g) + 7\mathrm{O}_2(g) \to 6\mathrm{H}_2\mathrm{O}(g) + 4\mathrm{NO}_2(g)$$