20

OXIDATION-REDUCTION REACTIONS

Practice Problems

In your notebook, solve the following problems.

SECTION 20.1 THE MEANING OF OXIDATION AND REDUCTION

Determine what is oxidized and what is reduced in each reaction. Identify the oxidizing agent and the reducing agent.

1.
$$2Sr + O_2 \rightarrow 2SrO$$

2.
$$2\text{Li} + S \rightarrow 2\text{Li}_2S$$

3.
$$2Cs + Br_2 \rightarrow 2CsBr$$

4.
$$3Mg + N_2 \rightarrow Mg_3N_2$$

5. 4Fe +
$$3O_2 \rightarrow 2Fe_2O_3$$

6.
$$Cl_2 + 2NaBr \rightarrow 2NaCl + Br_2$$

7.
$$Si + 2F_2 \rightarrow SiF_4$$

8.
$$2Ca + O_2 \rightarrow 2CaO$$

9.
$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

10.
$$2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2$$

SECTION 20.2 OXIDATION NUMBERS

1. Give the oxidation number of each kind of atom or ion.

c.
$$S^{2-}$$

$$g. Sn^{4+}$$

f.
$$Mg^{2+}$$

2. Calculate the oxidation number of chromium in each of the following formulas.

a.
$$Cr_2O_3$$

b.
$$H_2Cr_2O_7$$

$$\mathbf{c.}$$
 CrSO₄

d.
$$CrO_4^{2-}$$

3. Use the changes in oxidation number to determine which elements are oxidized and which are reduced in these reactions. (Note: It is not necessary to use balanced reactions.)

a.
$$C + H_2SO_4 \rightarrow CO_2 + SO_2 + H_2O_3$$

b.
$$HNO_3 + HI \rightarrow NO + I_2 + H_2O$$

c.
$$\text{KMnO}_4 + \text{HCl} \rightarrow \text{MnCl}_2 + \text{Cl}_2 + \text{H}_2\text{O} + \text{KCl}$$

d. Sb + HNO₃
$$\rightarrow$$
 Sb₂O₅ + NO + H₂O

4. For each reaction in problem 3 above, identify the oxidizing agent and reducing agent.

SECTION 20.3 BALANCING REDOX EQUATIONS

1. Balance these equations using the oxidation-number-change method.

a.
$$C + H_2SO_4 \rightarrow CO_2 + SO_2 + H_2O_3$$

b.
$$H_2S + HNO_3 \rightarrow S + NO + H_2O$$

c.
$$HNO_3 + HI \rightarrow NO + I_2 + H_2O$$

d. Sb + HNO₃
$$\rightarrow$$
 Sb₂O₅ + NO + H₂O

e.
$$KMnO_4 + HCl \rightarrow MnCl_2 + Cl_2 + H_2O + KCl$$

f.
$$KIO_4 + KI + HCl \rightarrow KCl + I_2 + H_2O$$

g.
$$Zn + Cr_2O_7^{2-} + H^+ \rightarrow Zn^{2+} + Cr^{3+} + H_2O$$

2. Write half-reactions for the oxidation and reduction processes for each of the following reactions.

a.
$$Fe^{2+} + MnO_4^- \rightarrow Fe^{3+} + Mn^{2+}$$
 (acidic solution)

b.
$$\operatorname{Sn}^{2+} + \operatorname{IO_3}^- \to \operatorname{Sn}^{4+} + \operatorname{I}^-$$
 (acidic solution)

c.
$$S^{2-} + NO_3^- \rightarrow S + NO$$
 (acidic solution)

d.
$$Mn^{2+} + H_2O_2 \rightarrow MnO_2 + H_2O$$
 (basic solution)

3. Balance these reactions using the half-reaction method.

a.
$$Zn + HgO \rightarrow ZnO_2^{2-} + Hg$$
 (basic solution)

b.
$$Fe^{2+} + MnO_4^- \rightarrow Fe^{3+} + Mn^{2+}$$
 (acidic solution)

c.
$$\operatorname{Sn}^{2+} + \operatorname{IO_3}^- \to \operatorname{Sn}^{4-} + \operatorname{I}^-$$
 (acidic solution)

d.
$$S^{2-} + NO_3^- \rightarrow S + NO$$
 (acidic solution)

e.
$$Mn^{2+} + H_2O_2 \rightarrow MnO_2 + H_2O$$
 (basic solution)

f.
$$CrO_2 + ClO^- \rightarrow CrO_4^{2-} + Cl^-$$
 (basic solution)